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Drifting convection rolls in a rapidly rotating cylindrical annulus with conical endwalls 
exhibit different transitional modes to chaotic flows at different Prandtl numbers. 
Three transition sequences for Prandtl numbers 0.3, 1.0 and 7.0 are studied for a 
moderately large Coriolis parameter and a wavenumber near the critical value using an 
initial-value code. As the Rayleigh number increases, each transition sequence first 
leads to a vacillating flow, and then to an aperiodic flow, the route of which is Prandtl- 
number dependent. From the low Prandtl number to the high Prandtl number, the 
transitions take different routes of torus folding, period doubling, and mode-locking 
intermittency . 

1. Introduction 
Thermal convection in a rapidly rotating annulus with slightly conical endwalls has 

been a valid model for stellar and planetary atmospheres (Busse 1976, 1983). Since 
recent efforts in simulating the flow have produced new dynamical features in the 
system (Or & Busse 1987; Schnaubelt & Busse 1992), considerable interest is directed 
toward the higher transitions. This interest is also motivated by complex chaotic 
behaviour reported in systems ranging from small oscillators to three-dimensional 
flows of continuous systems (see Thompson & Stewart 1986). Or & Busse (1987) 
found that for thermal Rossby waves, bifurcation of the basic mode lead immediately 
to a narrow range of skewed states known as the ‘mixed’ mode. The term ‘mixed’ 
describes a modal interaction between the first and the second radial modes. The first 
is the stable basic state; the second is unstable. When the mixed mode is unstable, it 
is shortly followed by a quasi-periodic, of vacillating state. The term ‘vacillation’ 
describes the spatial-temporal fluctuations of the travelling waves. This term was 
originally used to describe baroclinic waves that exhibit similar behaviour (for 
baroclinic waves, see Ghil & Childress 1987). The quasi-periodic state is more efficient 
in transporting heat and prevails over a larger range of Rayleigh numbers. In Lin, 
Busse & Chi1 (1989) a truncated model of two radial modes was used to investigate the 
transition sequences to chaos following the vacillating mode. Recently, Brummell & 
Hart (1992) also computed the transition sequence originally reported by Lin et al., 
using a high-resolution code (with 256 x 256 modes). Compared with Or & Busse 
(1987), however, Brummell & Hart used a mean-flow boundary condition that is free- 
slip rather than periodic. The two-mode model of Lin et al. is overtruncated, and 
therefore contains no mean flow. Brummell & Hart reported a different bifurcation 
sequence from that of Lin et al. Recently, Schnaubelt & Busse (1992) have extended the 
results of the problem to rigid boundary conditions but retained the periodic mean- 



2 A .  C. Or 

FIGURE 1. Geometry of the rotating annulus. 

flow condition. Their results confirmed the period-doubling bifurcations originally 
found by Or & Busse (1987). 

This paper focuses upon chaotic transitions following the vacillation mode in a 
moderately large system. With the integration scheme, sufficiently long time series are 
generated for analysing spatial and temporal behaviour. Since overtruncation of the 
spatial dependencies of variables can alter the physical nature of the flows (see 
discussions by Marcus 1981 and Curry et al. 1984) both spatial and temporal 
convergences of the simulated solutions are ensured. For a large system the 
computations effort can be enormous. Here we restrict the results to a fixed 
wavenumber close to the critical as well as three representative Prandtl numbers. This 
restriction is justified based on previous results that the bifurcation structure is quite 
insensitive to the wavenumber near its critical value. In 92, the mathematical 
formulation is developed. In $3, the mixed and the vacillating modes are reviewed 
briefly. In 94, the three transition sequences and their different chaotic routes are 
discussed. In $ 5 ,  some concluding remarks are made. 

2. Mathematical formulation 
We consider a fluid layer in a thin-gap cylindrical annulus as shown in figure 1. The 

apparatus rotates about the cylinder’s axis at angular speed 52. The sidewalls are held 
at constant temperatures T,  (inner wall) and T,  (outer wall), with T,  > q. Convection 
can occur in the form of rolls parallel to the spin axis if the temperature difference 
across the wall is sufficiently large. But unlike the ordinary rolls of Rayleigh-BCnard 
convection, the axial depth gradient of the layer presents a beta effect, which forces the 
rolls to drift as Rossby waves. With D2/v  (v is the kinematic viscosity) and (T ,  - T,) (Or 
& Busse 1987 used (T ,  - TJ P)  as the time and temperature scales, the vorticity and 
temperature equations according to the small-gap approximation are 

(1) 

(2) 

a, A2 $+ J($, A2 $)-47aU $- A; $+ P-I Ra, 8 = 0, 

a, B + J($, e) + aU $-P-I A, o = 0. and 
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Both equations have nonlinear terms of the form J ( f , g ) ,  defined by 

J ( f ,  g )  = a,f a, g - a,f av g.  

v = v x k$(x ,y ,  0, 

The A2 denotes the two-dimensional Laplacian of the lateral coordinates x (radial) 
y (azimuthal). The streamfunction, $, is defined by 

(3) 
and 

(4) 
where v is the perturbation velocity field. The major parameters of the problem are 
defined as follows: 

yD3 52' yo( T,  - T,) 7, 52D3 V R =  , 7=b' P = -  
V K  K '  

( 5 )  

where K ,  V ,  y ,  r,, 1, and 7, are respectively the thermal diffusivity, kinematic viscosity, 
coefficient of thermal expansion, mean radius, mean depth, and elevational angle of 
both endwalls. The system of equations (l), (2) is subjected to the conditions of no 
normal flow across sidewalls, isothermal walls, and periodic mean flow: 

$ = 0 = 0, x = 0, 1 ; 
Equations (1)-(3) are then approximated by an infinite set of ordinary equations using 
the Galerkin method, in which the expanding functions automatically satisfy boundary 
conditions. Solutions of the problem are sought in the following form: 

(a;, $),=, = (a;, $),=,. (6)  

m m 

$ = sin(Inx)[ii,,(t)cosna(y-ct)+~,,(t)sinna(y-ct)]+ C. ii1,1n(x2-x) (7) 

m 

and 

The second sum in $ is to ensure a periodic mean flow (see Or & Busse 1987 and 
Schnaubelt & Busse 1992). The azimuthal mean flow depends only on x, and is given 

6 = C. sin (Znx) [&,(I) cos na(y  - ct) + d,,(t) sinna(y - ct)]. (8) 
1 ,  

by __ m W 

u(x) = -a, + = - c ii,, 1n(2x - 1) - c in ii,, COS (inx). (9) 
l=odd z=1 

The mean flow at both walls is thus given by 
m 

U(0) = U(1) = - c lniizo. 
l=even 

The mean thermal gradients at the walls are 
.r; m 

(a,, = c ln&,, (a,T), = C. (- l)"nil,. 
1=1 z=1 

When 6,, are time independent, the constant-flux condition gives 
m 

Inszo = 0. (12) 
l=odd 

For a time-fluctuating mean field, local Nusselt numbers can be defined at each 
sidewall. Thus we have 

a, a2 

Nu, = 1 + c ln6zo, Nu, = 1 + c (- l)%&. (13) 
1=1 z=1 

Next, by inserting (7) and (8) into (l), (2), and averaging each resulting equation in turn 
by the set of weighting functions, 

sin (knx) cos ma(y - ct), sin (kn(x) sin ma(y - ct), (14) 



4 A .  C. Or 

we obtain an infinite set of nonlinear ordinary differential equations that govern the 
Fourier coefficients &(t) and 6,,(t). According to our truncation scheme, modes are 
retained if their indices 1,n satisfy 

l+n d N,. 

The number of unknown coefficients at truncation parameter N ,  is 2N;. The 
unknowns can be arranged as a state vector x .  The finite set can simply be denoted as 

x = f ( x ,  R, 8. p ,  a), (15) 
which is then integrated forward in time by assigning an appropriate initial guess of the 
state. Solution sequences here typically run as functions of R for selected values of 7, 
P and a. 

With an explicit scheme, stability usually requires dt < z O(l/maxIhl), where dt is 
the step size and rnaxlhl is the maximum eigenvalue of the linearized system. At 
P = 1, an explicit fourth-order Runge-Kutta scheme requires a step size of roughly 
5 x lop4 or smaller. A Rossby period of simulation then requires steps on the order of 
10'. At a smaller P, the number of steps is significantly larger owing to the much higher 
Rossby frequency. On the other hand, an implicit scheme requires larger storage and 
a matrix inversion per step (each step requires 216N; arithmetic operations). But it is 
actually more promising for our problem, as its numerical stability permits a stretched 
step size by a factor of 10' over that of the explicit scheme. Typically, only 5-10 steps 
are needed to simulate one Rossby period. With the implicit scheme, the state vector 
at time (n + 1) dt, x n f l ,  and that at time n dt, xn,  are related by 

(16) 

For typical runs, we use a time step between 5 x and lo-' for P > 1 and one 
between 5 x lop4 and 5 x for P = 0.3. Overall, we ensure that step-size convengence 
is satisfactory by testing the accuracy of a sample of steady-state solutions against 
those obtained directly from the Newton-Raphson method. Spatial convergence is 
more difficult to achieve. It is ensured by comparing solutions of various N,. 

Xn+l  - - x" +al r1 + u2 rz ,  Y, = f ( x n + * )  dt, r2 = f ( x " + l +  q1 Y~). 

3. The regular solutions 
We begin by reviewing some known solutions of the system. Several modes, up to 

the vacillation, have been studied in Or & Busse (1987) and Schnaubelt & Busse (1992). 
Only a brief account of these transitions will be provided here. 

Our system preserves some symmetry of a layer : by reversing the body force and wall 
temperatures, the equations are unchanged. In the Fourier representation, this 
symmetry is characterized by the radial and azimuthal indice, 1 and n. Each linear mode 
and its Rossby frequency depend on a single pair of indices ( I ,  n) ,  classifiable according 
to whether l+n is an even or odd integer. Since parity is preserved by the nonlinearity, 
depending on the parity of the sum of indices, the basic mode can be classified as even 
or odd. But here only the basic mode corresponding to the lowest indices (1,l)  is stable. 
All the higher even modes and all the odd modes are unstable. Also, rotation severely 
constrains the size of the rolls; the modal structure develops in the radial direction 
rather than in the azimuthal direction. The first odd mode thus corresponds to (2,l)  
rather than to (1,2). As R increases, the modes develop more complex spatial structures 
through bifurcations. Symmetries are naturally lost in modal interactions. The linear 
result indicates that the first two neutral curves are close to each other and indeed 
nonlinear analysis shows that these modes interact. But since these modes are travelling 
waves and possess distinct Rossby frequencies, two possibilities arise : either the 
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interacting modes lock up and produce a single frequency, or the interacting modes 
maintain their own drift rates. In the first case, the resulting mode remains a periodic 
travelling wave. In the latter case, the resulting mode becomes quasi-periodic, or 
vacillating. In Or & Busse (1987) and here the bifurcation always lead to the periodic 
‘mixed’ mode. Only a subsequent transition of this mode gives rise to quasi- 
periodicity. In Schnaubelt & Busse (1992), the vacillation mode preceded the ‘mixed’ 
mode for P = 7.0. It is likely that such a difference is attributed to differences of 
boundary conditions. The modal interaction was discussed for the asymptotic limit, 
q+m, by Busse (1986), who performed an explicit analysis. 

The foregoing arguments are supported qualitatively by studying the onset Rayleigh 
numbers of the first two linear modes. For P = 1.0, these numbers are 
Re (Re = 3.07 x lo4) and 1.17RC. The bifurcation of the vacillation mode occurs at 
approximately 1.22RC. For P = 0.3, these numbers are again R, (Re = 1.13 x lo4) and 
1.52Rc. The bifurcation point occurs at about 1.54Rc. In fact, the two frequencies of 
the quasi-periodic mode near the bifurcation point are reasonably close to those of the 
corresponding linear modes. According to linear theory, the ratio of the first mode’s 
frequency to the second’s frequency, c2/c,, is 

At a M a,, we have cJc2 equal to 0.77 and 0.66 for P = 1.0 and P = 0.3 respectively. 
Based on the calculations near the bifurcation point, the ratios of the vacillation 
frequencies are 0.69 and 0.66, respectively, for P = 1.0 and P = 0.3. The correlation 
between the ratio of linear frequencies and that of the vacillating frequencies is even 
better at the lower Prandtl number, but is worse at the higher Prandtl number. 

Certain qualitative features of the mixed and vacillating modes are of interest. Or & 
Busse (1987) noted that for the mixed mode, an increase of R leads to a decrease of 
Nusselt number or heat transport. The feature is not surprising in view of the skewed 
rolls, the strong mean shear, and the stronger phase shift between the hydrodynamic 
and thermal perturbational fields. After the unlocking of frequencies, the quasi- 
periodic mode is significantly more efficient in transporting heat. At each point at the 
walls, however, the heat flux is now fluctuating in time. The time-averaged heat fluxes 
into and out of the fluid are equal, but the fluctuation provides more freedom for 
optimizing the transport process. Schnaubelt & Busse remarked that the vacillation 
mode displays a certain relaxation response: a typical feature of the limit-cycle 
behaviour. A qualitative analogy with the Van der Pol’s oscillator can be drawn, in that 
the odd mode in the vacillation plays the role of nonlinear damping. The presence of 
the odd mode tends to steepen the thermal boundary layer and thus enhances the heat 
transport, but also increases the diffusions in the flow field. Because the azimuthal 
interaction is weak and the radial interactions strong, the strongest coupling between 
the odd and the even modes is through the mean fields. Strong coupling between the 
(1, l), (2 , l )  and (1,O) modes is evident from the solutions. The subtle balance between 
the odd and even modes obviously creates a limit-cycle response. 

4. Transitions to chaotic solutions 
As the Rayleigh number increases further, the vacillation becomes unstable. In Or 

& Busse (1987), Lin et al. (1989), Brummell & Hart (1992) and Schnaubelt & Busse 
(1992), the higher transition was studied only for the case of 7 = 700 and P = 1.0, and 
at a wavenumber equal to a,. Both Or & Busse and Schnaubelt & Busse reported the 
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FIGURE 2. Phase portraits of u2, versus a,, for P = 1.0: a comparison between N ,  = 5 (left 
column) and N ,  = 7 (right column). 
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FIGURE 3. Power spectra of a,, corresponding to the panels of figure 2.  
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R 
FIGURE 4. Bifurcation diagram for P = 1.0 showing up to the 8th period 

of the subharmonic sequence. 

period-doubling bifurcations, which precede the chaotic flows. Brummell & Hart only 
found the first period-doubling bifurcation; the subsequent transition to chaos takes 
the route of a torus-winding instead. But since a different mean-flow boundary 
condition was used, the difference between the results of Brummell & Hart and Lin 
et al. does not reflect discrepancies. Apart from the results of Brummell & Hart, no 
detailed information has been published on the nature of the chaotic flow even for the 
well - studied case of P = 1, and '1 = 700 (except for the severely truncated model of 
Lin et al.). The case of '1 = 700 typically corresponds to the presence of a significantly 
strong Coriolis effect. A bifurcation sequence for a fixed wavenumber near its critical 
value should be quite adequate if the wavenumber is an insensitive parameter. To 
restrict the number of runs within the scope of our computational efforts, we explored 
three bifurcation sequences at representative Prandtl numbers: P = 1.0, 0.3 and 7.0. In 
the process, the differences in solutions due to the overtruncation effects are strong. 
Such differences obviously justify analysis of a large rather than small system. 

4.1. Prandtl number = 1.0 
The case of 7 = 700, and CL = 9.4 will be examined. Since considerable work has 
already been done on this case, our emphasis is to establish the spatial convergence of 
the solutions. The two-dimensional phase portraits of the major Fourier coefficients 
and their corresponding power spectra provide crucial information concerning the 
cascade. The four coefficients ill, i,l, ill, and iZl provide important information about 
the bifurcation structures. The corresponding thermal coefficients show similar 
behaviour. In the portrait panels of figure 2, the horizontal and vertical axes represent 
a, = (S;, + G:l)i and a,, = (if, + respectively. In the left column, the panels 
correspond to NT = 5 and in the right to N ,  = 7. The step size of integration is 
between 0.005 and 0.01. The mixed mode appears as a point; the vacillating mode 
appears as a closed curve, or a limit cycle. Each subharmonic pitchfork bifurcation of 
the cascade doubles the number of windings of the existing loop. The similarity of the 
two sets of panels signifies spatial convergence. The corresponding power spectra are 
shown in figure 3 .  Only the spectra of a,, are shown, but those for a,,, a,, and Nu show 
similar information. The spectra of a,, do not have the Rossby frequency. Clearly both 
subharmonics and superharmonics are present. We are able to follow the amplitude 
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FIGURE 5. (a, b) Two-dimensional Poincare maps showing different sections of the chaotic attractor 
in the (a,,, a,,)-plane; ( c ,  d )  the shapes of the attractor via one-dimensional iterative maps. 

versus Rayleigh number diagram up to the third subharmonic bifurcation in the 
cascade. Figure 4 clearly shows the 8-period cycle. Further transitions are beyond our 
graphic resolution. In the figure, the solid lines are for N ,  = 7 and dashed lines for 
N ,  = 5.  Thediagram shows that overtruncationdelays the bifurcation. Awell-established 
theory of the period-doubling cascade exists for one-dimensional maps (Feigenbaum 
1984). The qualitative features of the transition here closely resemble the one- 
dimensional case, although the attractor here is clearly two-dimensional. Chaotic 
motions are found near the value of R corresponding to the accumulation point, 
3.89 x lo4, as predicted given the theoretical limiting value of 4.66920 ... and the first 
few transition values found. Although most solutions were obtained at N ,  = 5 and 7, 
we also computed the long-term chaotic behaviour for N ,  as large as 11. Similar 
chaotic behaviour to that of N ,  = 7 is found. 

Next, we investigate the geometry of the attractor using the method of a Poincark 
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FIGURE 6. Phase portraits of a,, versus a,, for P = 0.3, showing the emergence of chaotic 
behaviour via quasi-periodicity. 

map. A hypersurface in four-dimensional phase space is sought. Iterations on the set 
of points at which the trajectory of motion intersects the hypersurface provide the 
map ; projection of this set of points onto a two-dimensional plane produces the shape 
of the attractor. Since we obtain the solutions by prescribing c at an arbitrary value, 
we can use a translation of time to eliminate the drift effect for the coefficient pairs B,, 
and a',,, and B,, and &,,. In this case, after the correction for translation, ill becomes 
very close to zero. There are two distinct maps that we can construct: (i) for 
a,,/B,, = constant, we plot aZ1 versus a,,; and (ii) for all/&,, = constant, we plot u2, 
versus a,, (note: replacing the numerator of the ratio, a,, by a2,, will make no 
difference). For the case of NT = 9 and R = 39000 and for the constant equal to 2n, 
the two maps are shown in figures 5 (a) and 5 (b), respectively. In figure 5 (b), the lower 
of the two branches is present almost independent of the constant's value. The higher 
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FIGURE 7. Power spectra of a,, corresponding to figure 6. 

branch is not present when the constant is small. PoincarC maps of the same section as 
figure 5 (b) have already been discussed in Lin et al. (1989). In their case, more branches 
occur in the stalk-and-leaves structure. Furthermore, they have a different orientation 
than ours. In figures 5(c)  and 5 ( d ) ,  we also illustrate the iterative maps of a,,(n+ 1) 
versus a,,(n) and a,,(n+ 1) versus a,,(n) on the surface a,,(n)/a,,(n> = 0.5. These figures 
show the similarity of the two maps and the asymmetry of the attractor across the 45" 
diagonal line. The open circles correspond to a solution of N ,  = 11. 

4.2 Prandtl number = 0.3 
This lower Prandtl number implies that hydrodynamic nonlinearity becomes more 
important than thermal nonlinearity. The vacillation mode is stable in a relatively wide 
range of R, from 1.54Rc to 3.51RC, where Re = 1.13 x lo4. The Rossby frequency is also 
larger as the critical wavenumber becomes smaller, in this case, a, = 6.9. For the same 
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7, the bifurcation sequence corresponds to a = 7.2. The step size required for numerical 
stability is considerably smaller; in this case, it is between 0.0005 and 0.0025. The step 
size decreases as R gets higher. Unlike the case of P = 1.0, the lower N ,  does not 
produce spatially converged results. At N ,  = 5 and 7, we found phase-locking for 
vacillation at approximately R = 4.9 x lo4; following the locking, the limit cycle reverts 
back to steady state. At an even higher NT,  NT = 9, the convergence improves 
significantly. At R = 39000, the limit cycle begins to display sideband modulation. The 
post-transient phase trajectory appears to fill up a thin 2-torus. Figure 6 contains the 
sequence of phase portraits to illustrate this change. The vacillation becomes aperiodic 
somewhere between R = 39900 and 42000. The power spectra shown in figure 7 are 
consistent with the indications of the phase portraits: first, a new but non- 
commensurate frequency appears as a small subharmonic peak in the panel for 
R = 39000. Then the broad-band spectrum follows, evident at R = 42000. The 
transitions shown in figures 6 and 7 have also been repeated for the case NT = 10, 
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FIGURE 10. An extended time series in the chaotic region of P = 7.0 showing 
the intermittent behaviour. 

showing similar results. Adding a third frequency to the solution turns out to be so 
drastic that it actually turns the regular behaviour chaotic. This remarkable but abrupt 
change is the subject of the classical paper by Newhouse, Ruelle & Takens (1978). They 
proved that a degree-n torus with n 2 3 can be easily perturbed to strange attractors. 
Indeed, shortly after the third frequency emerges near R = 39900, we encounter a 
broad-band chaos. This transition pertains to a higher dimensional attractor. However, 
even without the Poincark map, the transition is quite clearly illustrated by the phase 
portraits and power spectra. 

4.3. Prandtl number = 7.0 
We now turn to the case where thermal nonlinearity dominates hydrodynamic 
nonlinearity. This case can be realized in laboratory experiments using water as the 
fluid. Following the basic mode, we find the mixed mode only within a narrow range 
between 1.31RC and 1.8RC (where R, = 64000). For R greater than 1.8RC, the mixed 
mode become unstable to vacillation following a Hopf bifurcation. For the higher 
Prandtl number, the vacillation mode is more sensitive to the truncation effect. Figure 
8(a-c) provides an example of this effect. The panels indicate that the shape of the 
phase portrait for the same solution at R = 122500 and a: = 11.5 is completely 
distorted by changing N ,  from 5 to 11. The panels for N ,  = 9 and NT = 11 (not 
shown) are almost the same, indicating convergence. As the subsequent flow field will 
show, flow is dominated by the odd modes, which require a higher spatial resolution 
to capture them. Having established spatial convergence at NT = 11, we fix N ,  at 11 
and increase R further. Figure 9(a-c) consists of three columns of panels which 
represent (from left to right) solutions for R = 133000, 135800 and 140000. Running 
from top to bottom, the panels are respectively the phase portrait of a,, versus a,,, the 
time series of d,, (solid) and dZ1 (dashed), the time series of d,,, the time series of 
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Nu (Nu,: solid; Nu, : dashed), and finally, the power spectrum of the time series of all). 
These progressive panels clearly indicate that the limit cycle exhibits aperiodicity at 
R = 140000. Unlike the case of P = 0.3, the time series clearly suggests some mode- 
locking process. To further clarify the transition process, it is desirable to study long- 
term behaviour. At R = 140000, we obtain a run for 45 non-dimensional units of time, 
corresponding to 3320 points and at a step size of 0.01. Figure 10 shows that chaotic 
behaviour has the resemblance of mode-locking intermittency : the solution appears 
quite periodic for some time, but suddenly produces bursts of irregularity (at 
intermittent intervals). As for the period-doubling cascade, a fairly complete account 
of the process also exists for one-dimensional return maps (Pomeau & Manneville 
1980). For the two-dimensional case, intermittent chaotic behaviour is best described 
by the 'drift ring' phenomenon (Ostlund et al. 1983). While the periodic solution 
appears as a stationary point in the PoincarC map, the chaotic solution is represented 
as a travelling point that rapidly drifts around the ring but spends most time near the 
stationary point. In figure 11, we construct similar PoincarC maps to illustrate this 
process, like those for P = 1.0. To get the right section, we set a1,/a2, equal to a 
constant instead. For this case, we let the constant be x/6. The drift-ring structure is 
evident from figure 11 (a),  showing ill versus &, and from figure 11 (b), showing aYzl 
versus The points rotate counterclockwise. The drift-ring phenomenon exists in 
simple relaxation oscillators (see, for example, the Van de Pol problem, Thompson & 
Stewart 1986). 

4.4. A summary 

One reason for these varied transitions to chaos is that the problem contains multiple 
timescales. When the beta-plane effect is added, each of the two diffusive timescales is 
involved in the dynamical process even on the linear problem level. For low Prandtl 
number, the mean shear is strong but convection and heat transport are weak. The 
reverse is true for high Prandtl number. Thus, at low Prandtl number the vacillating 
mode persists to a considerably higher R with a strong mean flow where it turns weakly 
chaotic through the formation of a 3-torus. At high Prandtl number, convection is 
strong and is dominated by the odd modes, a double-roll rather than a single-roll 
pattern is found and the mean temperature profiles steepen near the wall to reflect a 
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FIGURE 12. Mean Nusselt number versus Rayleigh number plots showing heat-transport 
dependency on Prandtl number. 

PIRIR,,  To even To mixed mode To vacillation To higher transitions 
mode 

0.3 1.0 1.17 1.54 

0.3 pitch-fork pitch-fork Hopf 
(R, = 11 253) 

1.0 1.0 1.14 1.22 

pitch-fork pitch-fork Hopf 
(R, = 30680) 

7.0 1.0 1.51 1 .so 

pitch-fork pitch-fork Hopf 
(R ,  = 63941) 

Onset of quasi-periodic flow (2-torus) 

Hopf 
Aperiodic flow with high regularity at 3.73 

Period-doubling sequence from 1.24-1.26 

Subharmonic pitch-fork 
Chaotic attractor of Feigenbaum type 

Onset of quasi-periodic flow (2-torus) 

Hopf 
Aperiodic flow resembled mode-locking 

at 3.51 

(approx.) 

at 1.27 

at 2.05 

intermittency at 2.18 

TABLE 1. A summary of the transitional values of R 

boundary-layer feature with high transport rate of heat. With a sufficiently large N,, 
we found that flow following vacillation is grossly periodic but intermittently chaotic. 
Between the two Prandtl numbers, at P = 1.0, transition to chaos takes the period- 
doubling route. The major difference between the intermittency route and the Ruelle 
and Takens route to chaos is that the former goes from a quasi-periodic flow to a 
phase-locked periodic flow and then to chaos; while the latter goes from a quasi- 
periodic flow directly to chaos. 

The existence of two means fields - those of the shear and temperature - and the 
coupling between the odd and even modes through these fields are especially complex. 
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FIGURE 13. A comparison of contours of streamfunction among three Prandtl numbers in the chaotic 
region: two snapshots, low mean flow (left panels) and high mean flow (right panels). (a)  Pr = 0.3, 
(b) Pr = 1.0, ( c )  Pr = 7.0. 

The relative importance of these two fields obviously shapes the higher transitions 
following the quasi-periodic flow. The system is an example of a complex relaxation 
oscillator. Obviously, that relaxation process is strongly influenced by the ratio of the 
two diffusivities. Both the mean and fluctuating field boundary conditions are expected 
to influence the transitions significantly. The numerical results should be of 
considerable value for future work, especially in laboratory experiments. Table 1 
compares the transition values of R and the types of transitions for the three Prandtl 
numbers. In figure 12, we summarize the heat transport rates by showing the mean 
Nusselt number, 0.5 (Nu, + Nu,) - 1 versus RIR,. The stable branches of solutions are 
shown as solid lines and the unstable branches as dashed. The diagram also shows how 
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Prandtl-number-dependent Nu is, even though the weakly nonlinear theory predicts 
that Nu is Prandtl-number independent. In figure 13, we compare the flow fields for (a)  
Pr = 0.3; (b) Pr = 1.0 and (c) Pr = 7.0. In each case, we plot 4,  which includes the 
mean field. In each panel, the vertical axis represents the x-axis (pointed downward); 
the horizontal axis represents the axis ( y -  ct). For each case, the left panel corresponds 
to a minimum in the mean flow coefficient &, and the right panel corresponds to a 
maximum. In all cases the solutions are chaotic. We have R = 39000, 42000 and 
140000 for cases (a-c), respectively. The flow fields obviously shift in shape throughout 
the chaotic cycle. The strongest mean shear appears in case (a); the steepest boundary- 
layer-type structure appears in case (c). In each case, the pattern exhibits a double-roll 
structure, at least during part of the cycle. 

5.  Concluding remarks 
Although many studies of chaotic systems already exist, relatively few have been 

devoted to large systems. With the rapid growth of computing power, numerical 
simulations of real continuous systems are expected to gain importance. So far we have 
identified the different routes to chaotic behaviour for the different Prandtl numbers, 
for a pattern-forming flow the basic state of which is a travelling wave. The 
computational aspects are dramatically simplified given the two-dimensional nature of 
the flow. While detailed analysis of the bifurcation is beyond our scope, we have 
captured the major qualitative features of transitions to chaos. 

Here we summarize the major results. At the low Prandtl number, the chaotic 
transition takes the route of torus folding. A third frequency emerges following the 
instability of the vacillation mode. This type of transition matches the description in 
the Newhouse-Ruelle-Takens (1978) scenario. At a Prandtl number of one, chaos is 
found following a period-doubling sequence. Here, we identified up to the third flip 
bifurcation. Chaotic behaviour occurs very close to the theoretical accumulation point, 
however, based on the first several transitional values in R and the theory of one- 
dimensional maps. At the larger Prandtl number, the results reflect mode-locking 
intermittency chaos. For specific purposes, two-dimensional PoincarC maps have been 
constructed to illustrate the shapes of the attractors. 

Strong Prandtl-number dependence of the chaotic transitions is not surprising given 
the dramatic changes in heat transport and mean shear characteristics over the range 
of the ratio of diffusivities. When P is small, the mean shear is stronger and heat 
transport weaker. When P is large, the reverse becomes true. The change of the two 
mean quantities indicates shifts in dynamic balance. Schnaubelt & Busse noted that the 
vacillating mode, unlike the oscillatory modes of ordinary convection, actually 
enhances heat transport rather than decreases it; in fact, we found that heat transport 
is even stronger in chaotic flows. This property does not seem to be affected by the 
Prandtl number. The power spectra and flow patterns indicate that chaotic 
fluctuations are rather weak compared with the periodic coherent structures of 
vacillation. In fact, we found that the weak chaotic field persists for a much larger R 
(say, 1.5 times larger). Thus, in this example chaos does not lead to complete disorder; 
rather, it appears to optimize certain flow quantities such as heat transport and mean 
shear. 

I am grateful to Professor M. Ghil of UCLA and the anonymous referees for 
suggestions and comments. This work was partly supported by the National Science 
Foundation under Grant number ATM90-13217. 
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